“最后一题,还剩最后一题。”
沈奇虽然对前五题的解答有信心,但他不知道其他选手的状况。
如果要拿到金牌,最保险的办法就是答对全部题目。
当沈奇认真审视完最后一题,他觉得出这题的人简直就是魂淡。
最后一题是这样写的:
“时间穿越到公元前500年,而你是希帕苏斯的师弟,请证明不存在某个整数与整数之比,它的平方为2。”
“请小心,你的师兄希帕苏斯刚被你的老师毕达哥拉斯淹死,千万不要尝试几何作图法去完成证明,否则你也会被淹死。”
“一旦你被淹死,你将拿不到哪怕一分。”
是的,这就是全国数学联赛决赛的压轴题,就是这么魂淡。
题面转化为数学语言其实非常简单,即:请证明根号2是无理数。
无理数也就是无限不循环小数,比如.44235……它没有规律,不讲道理,就这么无穷无尽的延伸下去,从不出现循环。
即便初中生也知道根号2是无理数,并能写出至少一种证明方法,去证明根号2是无理数。
而沈奇能写出至少八种方法,证明根号2是无理数。
这题好简单呀,初二的学生都会做啦。
真的吗?
事实真是这样吗?
不,并不是。
这是国决压轴题,并没有你想象的那么L。
因为在出题老师的设定中,沈奇穿越到了古希腊,成为了毕达哥拉斯的学生,希帕苏斯的师弟。
学数学的人不可能不知道毕达哥拉斯派,以及这个学派的创始人毕达哥拉斯。
毕达哥拉斯是数学史上的远古大神,他在萨摩斯岛上建立了一个神秘组织,集科学、宗教、哲学为一身,用现在的话说,这个组织极有可能就是传说中的“科学神教”。
毕达哥拉斯派的核心宗旨就是:数学研究抽象概念。
直到2世纪的今天,数学家们也承认毕达哥拉斯在2500年前提出的观点,数学研究的是抽象概念。
毕达哥拉斯一生中有两大爱好,研究数学,以及杀学生,越聪明成绩越好的学生越要杀。
希帕苏斯是毕达哥拉斯的得意弟子,他通过几何作图法,证明了不存在某个整数与整数之比,它的平方为2。这个方法记录于初中二年级的课本上,是初中生接触无理数的启蒙篇章。
然后希帕苏斯就被毕达哥拉斯绑起来丢海里喂鱼了,让你装逼?装逼者必须死。
毕达哥拉斯死后,希帕苏斯所创的几何证明法最终流传于世,他用生命换来的奇思妙思即今天初中课本上的“正方形无穷辗转相除算法求最大公约数”。
在国决压轴题特殊的题境中,沈奇被出题者设定为希帕苏斯的师弟,所以他不能使用几何法去证明根号2是无理数。否则会被出题者“淹死”,连一分都拿不到。
在沈奇掌握的至少八种证明方法中,当然也有其他办法,但他是希帕苏斯的师弟,生活在2500年前,那个时代尚不存在质数法,甚至连根号都没出现,所以其他的证明方法自动失效。
题面上写的是“请证明不存在某个整数与整数之比,它的平方为2”,而不是“请证明根号2是无理数”。
所以这题很变态。
这也印证了数学界的一句老话:siple-is-hard
越简单,越困难。
“纠结,纠结啊,在这么多变态的限制条件下,这题到底该如何破?”