这句话似乎某种程度上印证了大个子弗莱迪的担心——黎曼真的是觉得他们实力还不足以给他当实验材料, 甚至不愿意单单从更好培养的小孩子培养起,而是决定将他们这些成年人也一块拔苗助长了吗?
但是,但是!
弗莱迪胸中无端地生出了一口豪气!
怎能让孩子们独自承受危险, 他们这些老胳膊老腿应该为他们挡在危险之前才是。
如果黎曼知道他在想什么,估计只会憋出一句:“……你想太多了。”
黎曼和弗莱迪回到火堆群旁, 那几个小孩还聚在一起叽叽喳喳,不知道在讨论些什么,于是黎曼转头对弗莱迪说:“那就先把……嗯, 十五岁以上的人聚集起来吧,我先给你们上课, 艾尔他们还在讨论他们的想法。”
.
黎曼看着面前坐了一排又一排的人, 放了一个【召唤·光】,他又看向他们手中的一张纸一支笔:“呃,一张纸大概不够记笔记的, 你们多拿几章。”
等其他人准备完毕,黎曼也捏出了一道石板, 准备开始上课。
“你们这个年纪……那就从实数开始讲起吧。”
“我知道你们对数的认知和魔法紧密关联,但是我还是决定从正常的逻辑来介绍数。”
“最简单, 最容易被人类意识到, 并且抽象概括出来的数,是正整数,我们再给它加一个0上去, 就是自然数,自然数对加法和乘法是封闭的,这句话的意思是, 1 1等于的2依旧是自然数, 1乘2等于的2依旧是自然数, 任意两个自然数相加,相乘,结果依旧是自然数,那么它对什么是不封闭的呢?”
“减法。”
“如果我面前摆有五只野果,我吃掉了三只,把这个过程抽象为一个算式的话就是5-3=2,这种减法是比较直观的,生活中常用的,最容易被抽象出来的,而且答案依旧在自然数里。”
“但是如果算式是3-5,我们就没法从自然数中找到一个数去当它的答案,但这个式子依旧是有意义的,比如我现在有三枚银币,但是我买了一本书,要五枚银币,那么此时我倒欠书店老板2枚银币。”
“由此我们将数的范围扩充到整数,也就是我们加入了负数的概念。”
“现在,整数对加法,乘法,减法都已经是封闭的了,但是它依旧不够好用。”
“我们会碰到这样的情况,现在有八个人出去采集野果,采到了十六个野果,那么我们自然地就会将16平分给8个人,并且得到算式16/8=2,也就是除法,整数对除法是不封闭的,比如2/3,得到的就不是整数,于是我们把数的范围扩充到有理数。”
“我知道你们更习惯把这个叫做分数,但是我更喜欢叫有理数,所以记下这个词然后以后你们就知道它代表什么了。”
“在这里我们对有理数进行一个定义,我们把有理数定义为p/q,其中pq是互质的整数,q为正整数,p为整数。”
“有理数的范围足够我们做大多数运算了,但是它并不囊括了所有数。”
“比如经典的根号2,我们来证明一下,根号2不为有理数,也就是说,根号二没法表示成分数。”
“我们采用一个反证法。”
“假设根号2可以表示为形式为p/q的有理数,其中pq是互质整数,那么我们可以得到一个等式p?=2q?。”
“我再次强调一遍,我们假设了p,q都是整数,那么这种情况下,p必不能为奇数,因为奇数的平方里不可能有2这个因数,对吗?”
“所以我们推出,p为偶数,偶数可以表示为2k,其中k为整数。”
“于是我们又得到了一个等式,2k?=